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A procedure of classical extension of a theory is worked out on the basis of a 
natural generalization of the notion of observable, the states of the extended 
theory being the probability measures on the pure states of the original one. Such 
a classical extension applies to quantum theory, and the qualifying features of 
quantum observables are preserved in the extended model. 

1. I N T R O D U C T I O N  

We deal with a new kind of  classical representation, or classical exten- 
sion, of  quantum theories which rests on a physically natural notion of  
observable that encompasses both the usual classical and quantum versions. 
This classical extension involves the fact that, starting f rom a quantum set 
o f  states SQ, it is always possible to construct a new classical structure 
of  s ta tes - -namely  a convex set where the nonpure states have a unique 
decomposi t ion into pure o n e s - - w h i c h  can be mapped onto SQ. 

The roots o f  this study can be found in previous work of  one of  the 
present authors (Bugajski, 1993). The use o f  probability measures on the 
pure elements of  SQ to represent the states is not new: it was considered by 
Misra (1974) and Ghirardi et al. (1976), and sometimes appears in the litera- 
ture, as for instance in a recent paper by Amann  (1993). The usual quantum 
observables, when looked upon in this classical extension, appear as unsharp 
classical observables, and the qualifying quantum features are preserved in 
this extension. 
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2. ON T H E  N O T I O N  OF OBSERVABLE 

The intuitive physical notion of observable consists in the specification 
of the possible outcomes and of their probability distribution for each state 
of the physical system. Let S be a convex set representing, in a given theoreti- 
cal model, the set of all states of the physical system under attention; let 
be a measurable space (in which the observable will take values) and write 
~ ( E )  for the Boolean o--algebra of the measurable subsets of E. We shall 
then define an observable, in the given theoretical model, as an affine map 
of S into the convex set M~ (-~) of the probability measures on ~.  Typically 
we shall have for E the real line R, but also E = ~" might occur when 
dealing, for instance, with joint observables. All the singletons of ~ will be 
assumed to be measurable. 

This definition of observable, though natural, is not of frequent use in 
the literature: one can find it applied in studies on probabilistic and statistical 
aspects of quantum mechanics (see, e.g., Holevo, 1982), in works on the 
phase-space representation of quantum theories (see, e.g., Ali and Prugovecki, 
1977; Singer and Stulpe, 1992; Bugajski, 1993), or in studies on more general 
frameworks (Beltrametti and Bugajski, 1993; Cassinelli and Lahti, 1993). As 
we shall see, this definition of observable encompasses the usual versions 
used in classical or in quantum mechanics. 

Let B: S ~ M1 (~)  be an observable; to any pair (c~, X), oL E S, X 
~ ( ~ ) ,  it associates the real number (Ba)(X) ~ [0, l], i.e., the value the 
measure Bot takes at the set X. For fixed X ~ ~ ( ~ )  we get an affine function 
Es.x from S into [0, 1], hence an effect according to the common terminology. 

The effects form a poset under the pointwise ordering: if al, a2 are 
effects, we say that al - a2 whenever ai(c0 --< a2(o 0 for all ~ E S. We write 
0s for the least effect (the null function on S) and es for the greatest effect 
(the unit function on S); we denote [0s, es] the set of all effects on S, and 
notice that it is naturally endowed with a convex structure, for the convex 
combination of two effects is obviously an effect. 

The observables can be identified with the effect-valued measures on 
~ ( ~ ) :  in fact, any observable determines an effect-valued measure on ~ ( E )  
and, conversely, any effect-valued measure on ~ ( ~ )  clearly determines an 

+ affine map of S into M~ (~), hence an observable. 
Let us now look at a number of familiar notions associated with the 

definition of observable. 
(i) Spectrum. Intuitively, the spectrum of the observable B: S --> 

M~ (~),  denoted SpB, is the smallest subset of ~ that contains all possible 
values of B. More precisely, we need ~ ( ~ )  to be generated in the standard 
way by a topology on ~ (as in the case ~ = R) and SpB is defined as the 
smallest among the closed subsets of ~ such that Es, spB = es. 
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(ii) Expectation value and variance�9 Assuming for 9 some linear struc- 
ture (take, e.g., 9 = R), let Ix ~ MI (=), and define as usual its expectation 
and variance by 

Exp(t~) := ( ~  dl~(~); Var(I x) := ~ [6 - Exp(Ix)] 2 dIx(~) (1) 
J~ _= 

provided the integrals exist (which is ensured if 9 is bounded). If Ix is the 
image of a state a ~ S under the observable B, we call the quantities in 
(1) the expectation value (or mean value) and the variance of the observable 
B at the state a and we favor the notation Exp(B, eL) and, respectively, 
Var(B, ~). 

(iii) Eigenstates and eigenvalues. An eigenstate of the observable B: S 
M~ (=)  is a state c~ E S which is mapped by B into a probability measure 

concentrated at some h E 9 .  We write ~ for such a probability measure 
and call it a Dirac measure, h is said to be an eigenvalue of B. 

(iv) Sharpness. It may happen that the effects associated to an observable 
B belong to the family 0[0s, es] of the extremal elements of the convex set 
[0s, es]. In this case the observable is said to be sharp. 

(v) Uncertainty relations. We say that two observables BI: S ---) 
M~-(9 i) and B2: S ~ M~-(92) obey an uncertainty relation (or are complemen- 
tary) if there is a positive h such that 

Var(Bi, eL) Var(B2, c~) >-- h (2) 

for all e(s at which the two variances exist. 
(vi) Comeasurability. Two observables BI S --~ Ml (=l)  and B2: S --~ 

M~ (=2) are called comeasurable if there exists a third observable B: S --) 
M~ (=l  • =2) such that B1 = w~ �9 B, Be = "rr2 o B, where 91 • 92 is the 
measurable-space product of 91, 92, while ~rl and qT 2 are the marginal 

+ ~.,~ ~.~ + ~ + ~'-~ 

projections of M1 (=1 • =2) onto M1 ( - l )  and Ml (=2), respectively. We 
recall that a marginal projection, say "rrj, of M~-(9~ • 92) is defined by 
(rrlIx)(X) "= Ix(X • 9z) for any Ix c Ml (=1 • me) and X E ~ ( 9 0 .  The 
observable B above is called the joint observable of B~ and B2, while BoL, e~ 

S, is traditionally called the joint probability distribution of B~ and B2 at 
e~. Notice that the joint observable of B1 and B~ need not be unique (Beltrametti 
and Bugajski, 1994). 

We shall now verify that the definitions of observables commonly used 
in the quantum and the classical cases are recovered by our definition. 

The Quantum Case. S becomes the set SQ of all density operators on a 
separable complex Hilbert space 7~, and the effects on SQ are known to be 
in one-to-one correspondence with the positive operators on ~ which have 
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mean value at every state not bigger than one: explicitly, if ~ is such an 
operator and D ~ SQ, then the effect associated to ~ is the function SQ --~ 
[0, 1] defined by Tr(D~). We account for this fact by saying that the observ- 
ables are the POV-measures. 

On the other hand, in the standard formulation of quantum mechanics 
the observables are defined as the self-adjoint operators on ~ ,  namely as the 
projection-valued measures (PV-measures) on ~(R),  and PV-measures are 
obviously a subclass of POV-measures: thus the usual "observables" of quan- 
tum mechanics are recovered as a particular case of the observables defined 
more generally as the affine functions from SQ into M{(R). It is worth 
remarking that the effects associated to projection operators on ~ can be 
viewed (see, e.g., Davies, 1976, p. 19) as the extremal elements of the convex 
set [0sQ, esQ]. Thus, the usual observables of quantum mechanics correspond 
to the sharp observables in the more general framework we are considering. 

The Classical Case. S becomes the simplex Mi~(l]) of all probability 
measures on some measurable space ~ the "phase space" of the physical 
system under discussion, whose elements can be thought of as the pure states 
(we assume the singletons of f~ to be measurable). The convex set S = 
M~(~2) meets the most essential property of classical (as opposed to quantum) 
physical systems: the unique decomposability of mixed states into pure states. 
According to our definition, the observables are now the affine mappings of 
m{(f~) into Mi (~). 

On the other hand, in classical statistical mechanics the observables are 
commonly represented by measurable functions on ~ with values in ~.  Let 

+ ~-~ 

f :  lq --~ ~ be one of such functions and define B/: M{(f~) --~ Mj (~)  by 

(s iv)(x)  := v0r-1(x)) (3) 

where v E M~-(12), X E ~(_=), andf - l (X)  is the counterimage of X under 
f It is easily seen that Br is affine: hence it is an observable. We come to 
the conclusion that the usual observables of classical statistical mechanics 
are recovered as a particular case. 

As we shall see, a special role is played by those effects on M~-(~q) 
which come from measurable functions on ~ taking values in [0, 1]. Indeed, 
let g be one of these functions and attach to it the function ag: M~((I'~) 
[0, 1] defined by 

= fng(co) dv(oJ) (4) ag(V) 

ag is affine, hence it is an effect that we shall call regular. Correspondingly, 
an observable B: M~(f~) + - --~ Mj (~)  will be called regular whenever its effects 
EB, x are regular for every X c ~ ( ~ ) .  The usual observables of classical 
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statistical mechanics belong to the family of regular observables (Beltrametti 
and Bugajski, 1994): they are the sharp ones or, equivalently, their effects 
have the form (4), where g is a characteristic function XY for some Y ~ ~(_=). 

With reference to the notion of comeasurability given above, it is worth 
noting the following property (Beltrametti and Bugajski, 1994): Any two 

+ ~,.~ + ~.,..~ 

regular observables Bl: Mi~(f~) -+ M~ (~l) ,  Bz: Mi~(lq) --~ M1 (=z) are 
comeasurable. 

3. M O D E L  EXTENSION 

Given the description of a physical system in terms of a convex set of 
states S and of the observables on S as discussed in the previous section, we 
want now to introduce the notion of extension of this descriptive model, 
based on some new convex set, say S. Thus we say that the convex set 
provides an extension of the model based on S if there exists an affine 
surjective map R: S --~ S. Such a map will be called the reduction map, for 
it reduces, so to speak, the S-based model to the S-based one. 

As a familiar example one could think, in the framework of standard 
quantum mechanics, of a compound system and a subsystem of it: the descrip- 
tion of the subsystem on the basis of the Hilbert space of the compound 
system provides an extension of the description based on Hilbert space of 
the subsystem and the partial trace provides the reduction map. More gener- 
ally, the above definition of model extension captures the physical notion of 
"coarse graining": since R maps S onto S, it determines a partition of S into 
equivalence classes, in the sense that all elements of S having the same image 
in S form an equivalence class, or a coarse graining. 

Let us focus attention on the observables of the S-based and of the S- 
based models. Loosely speaking, since S is "richer" than S, we expect to 
have "more" observables on S than on S. Actually every observable on S has 
a representative on S through the reduction map. In fact, if B: S --4 M1 (=) 

+ ~-~ 

is an observable, then the map composition B o R: S --+ S --) MI (=) is an 
observable on S, to be denoted/~. The observables on S which are representa- 
tives of the ones on S share a surprisingly wide array of properties of the 
original observables. We shall list below the main invariants between corres- 
ponding observables. 

1. I f B a  is the probability measure on ~ describing the statistical distribu- 
tion of results of measurements of B at a,  predicted by the S-based model, 
then /~6~ = Ba for every 6t in the counterimage of c~ under R: thus, the 
extended model based on S predicts the same statistical distribution of results 
of measurements of/~ at ft. In short, BS =/~S  for every B: S ~ Mi~(~). In 
particular, two corresponding observables B,/~ have the same spectrum, and 
the same eigenvalues [see (i), (iii) of Section 2]: intuitively, this means that 
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both the original observable B on S and its representative/~ on S have the 
same set of possible outcomes. Moreover, if the observable B on S has 
expectation Exp(B, eO and variance Var(B, or) at the state tx E S [see (ii) of 
the previous section], then 

Exp(B, 6) = Exp(B, ~), Var(13, 6,) = Var(B, o~) (5) 

for every 6t in the counterimage of o~ under R. 
2. Let BI, B2 be two observables on S that satisfy the uncertainty relation 

Var(Bj, or) Var(B2, ix) >- h 

for all ct E S at which the two variances exist. In view of equation (5) and 
taking note that R maps S onto S, we have that/~l := B1 �9 R,/~2 := Bz o R 
satisfy the uncertainty relation 

Var(B1, 60 Var(B2, 60 >-- h (6) 

for all 6~ e S at which the two variances exist, with the same h. In other 
words, the uncertainty relations remain invariant when we move from the 
observables on S to their representatives on S. 

3. If two observables Bz, B2 on S are comeasurable [see (vi) of previous 
section], then also their representatives/~l := B~ o R and B2 := B2 Q R on 

are comeasurable. Indeed, if B is a joint observable of B1 and B2, then/~ 
= B o R is clearly a joint observable of/~j and/~2. Notice, however, that 
this argument cannot be reversed: as we shall see in the next section, it 
may happen that two observables on S which are not comeasurable have 
comeasurable representatives on S. This phenomenon shows that the extension 
procedure pushes toward "less quantal" or "more classical" models. Indeed 
we shall see that any quantumlike set S of states admits an extension in which 
the set S is of classical nature, and all observables on it are comeasurable. 

4. CLASSICAL EXTENSION OF QUANTUM T H E O R Y  

Let the S-based model be an extension of the S-based model in the sense 
said in the previous section. We say that the S-based model is the canonical 
classical extension of the S-based model when S consists of all the probability 
measures on the set 0S of the pure states (i.e., the extremal elements) of  S; 
in other words, when there exists an affine surjective map 

RM: M?(OS) --~ S (7) 

The label M refers to Misra (1974), who studied such a map in the 
particular case in which S is the set SQ of all density operators on a Hilbert 
space. The above notion of classical extension was already considered in a 
more specific context by Holevo (1982). 
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We list below a few relevant facts pertaining to the notion of canonical 
classical extension (Beltrametti and Bugajski, 1994). 

(i) The S-based model admits the canonical classical extension if S is 
the set of all countable convex combinations of pure states, in which case 
the affine surjective map RM: M[(OS) ~ S becomes a one-to-one correspon- 
dence when restricted to the extremal elements. The image of v ~ M[(OS) 
under RM can be written as 

RM(v) = s ~ dr(a) (8) 
s 

where the integral on the right-hand side has to be understood, when v is 
concentrated at an infinite number of points of OS, as the weak integral, i.e., 
as the function which attaches to any effect a on S the result of integrating 
its restriction to OS with respect to v. While the map RM is one-to-one when 
restricted to the pure elements, it is in general many-to-one when applied to 
nonpure elements: this is the case whenever the decomposition of a nonpure 
state of S into pure states is nonunique. It is worth stressing that the construc- 
tion of the canonical classical extension is uniquely defined by the fundamen- 
tal convex structure of S and does not depend on any particular realization 
of S. 

(ii) If B: S ---> M T ( ,  =)  is an observable of the original S-based model, 
then its representative /3 := B o RM: M-~(OS) --+ MI (=) in the canonical 
classical extension is regular. Comparing this property with the one quoted 
at the end of Section 2, we come to the following conclusion: The representa- 
tives, in the canonical classical extension, of any two observables of the 
original S-based model are comeasurable. 

(iii) If there exists a pure state of S having dispersion on the observable 
+ 

B: S --+ Ml (=) of the S-based model, then the representative of B in the 
canonical classical extension cannot be sharp. This shows that sharpness is 
not preserved by the canonical classical extension. The representatives of the 
S-based model acquire the classical feature expressed by the item (ii) above 
at the price of losing the possibility of being sharp. 

On the basis of what is said above, we can now focus attention on the 
case of quantum mechanics, namely on the case in which S is the set S o of 
density operators on a Hilbert space ~ and its boundary OS is the set of the 
one-dimensional projectors. The relevant fact is that SQ meets the conditions 
quoted in item (i) above, which means that quantum mechanics does admit 
the canonical classical extension. In other words, there exists an affine surjec- 
tive map 
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RM: M~(OSQ) ~ SQ (9) 

which carries the canonical classical extension of quantum mechanics. 
It is worth recalling that the decomposition of a density operator into a 

convex combination of one-dimensional projectors (the pure states of SQ) is 
never unique: there are infinitely many distinct convex combinations of pure 
states that give rise to the same density operator. Therefore, the counterimage 
of a density operator under R M consists of all the probability measures on 
the pure states corresponding to that density operator. 

Going through the results quoted above (see also Section 3), we can 
now list a number of facts about observables. For short we call Q-observables 
the ones on SQ; as seen in Section 2, they include the usual observables 
described by self-adjoint operators on ~ ,  as well as the unsharp ones associ- 
ated with POV-measures. We call C-representatives their counterparts in the 
canonical classical extension, namely their representatives on M~(OSQ). 

1. The statistical distribution of results of a Q-observable is the same 
as the statistical distribution of results of its C-representative: in short, BSQ 
= BM{(OSQ) for any Q-observable B. In particular, a Q-observable and its 
C-representative have the same spectrum and the same eigenvalues; moreover, 
expectation values and variances are unchanged going from Q-observables 
to their C-representatives. 

2. Whenever two Q-observables obey an uncertainty relation, so do their 
C-representatives (with the same uncertainty limit). 

3. The C-representatives of the Q-observables are regular but not sharp. 
4. Any two Q-observables have comeasurable C-representatives. 

Summing up, we see that when we represent quantum observables within 
the canonical classical extension of quantum mechanics, all the most typical 
quantum features are preserved; nevertheless, some traditional tenets like the 
claim that uncertainty relations and noncomeasurability always go together 
have to be dismissed. The representatives of quantum observables in the 
classical extension are something different from the observables occurring 
in usual classical statistical mechanics, where only sharp observables are 
used: in our representation only nonsharp observables occur as images of 
the quantum observables. 

The canonical classical extension of quantum theory calls into play a 
richer set of states--not just S 0, but all the probability measures on 0SQ--and 
a richer set of observables, only some of them being C-representatives of Q- 
observables. In this sense we might pictorially say that the canonical classical 
extension is somewhat like a hidden-observable generalization of quantum 
theory. The familiar Q-observables do not separate different convex combina- 
tions of pure states that correspond to the same density operator; in other 
words, there are distinct preparation procedures of statistical ensembles that 
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are not distinguished by the Q-observables. On the contrary, the new observ- 
ables entering the canonical classical extension do that separation. Thus, what 
is physically interesting is whether there might exist phenomena that are able 
to separate those different statistical ensembles which the usual quantum 
observables are unable to separate; in other words, whether there might be 
phenomena that make use of the richer set of observables involved in the 
canonical classical extension. As pointed out years ago by Mielnik (1974), 
one might conjecture about nonlinear phenomena as possible candidates: 
indeed, it has been shown (Bugajski, 1992) that the observables described 
by nonlinear operators find an appropriate representation as observables 
related to the canonical classical extension. 

ACKNOWLEDGMENTS 

One of the authors (S.B.) acknowledges the support provided by the 
Science Research Committee (KBN, Warsaw) under grant 2/2420/92/03. 

REFERENCES 

Ali, S. T., and Prugovecki, E. (1977). Journal of Mathematical Physics, 18, 219-228. 
Amann, A. (1993). The quantum mechanical measurement process in the thermodinamical 

formalism, in Symposium on the Foundations of Modern Physics, 1993, E Busch, P. Lahti, 
and R Mittelstaedt, eds., World Scientific, Singapore. 

Beltrametti, E. G., and Bugajski, S. (1993). International Journal of Theoretical Physics, 
32, 2235-2244. 

Beltrametti, E. G., and Bugajski, S. (1994). A classical extension of quantum mechanics, to 
be published. 

Bugajski, S. (1992). International Journal of Theoretical Physics, 30, 961-971. 
Bugajski, S. (1993). International Journal of Theoretical Physics, 32, 969-977. 
Cassinelli, G., and Lahti, E J. (1993). Journal of Mathematical Physics, 34, 5468-5475. 
Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, New York. 
Ghirardi, G. C., Rimini, A., and Weber, T. (1976). Nuovo Cimento, 36, 97-118. 
Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory, North- 

Holland, Amsterdam. 
Mielnik, B. (1974). Communieation in Mathematical Physics, 37, 221-256. 
Misra, B. (1974). In Physical Reality and Mathematical Description, C. E Enz and J. Mebra, 

eds., Reidel, Dordrecht, pp. 455-476. 
Singer, M., and Stulpe, W. (1992). Journal of Mathematical Physics, 33, 131-142. 


